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Some history of minimal surfaces

Minimal surface theory originates with Lagrange who in 1762 considered
the variational problem of finding the surface z = z(x, y) of least area
stretched across a given closed contour. He derived the Euler–Lagrange
equation for the solution
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He did not succeed in finding any solution beyond the plane. In 1776 Jean
Baptiste Marie Meusnier discovered that the helicoid and catenoid satisfy
the equation and that the differential expression corresponds to twice the
mean curvature of the surface, concluding that surfaces with zero mean
curvature are area-minimizing.
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By expanding Lagrange’s equation to(
1 + z2

x

)
zyy − 2zxzyzxy +

(
1 + z2

y

)
zxx = 0

Gaspard Monge and Legendre in 1795 derived representation formulas for
the solution surfaces. While these were successfully used by Heinrich Scherk
in 1830 to derive his surfaces, they were generally regarded as practically
unusable. Catalan proved in 1842/43 that the helicoid is the only ruled
minimal surface (i.e. a surface generated by the motion of a straight line).
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Progress had been fairly slow until the middle of the century when the
Björling problem was solved using complex methods. The "first golden
age" of minimal surfaces began. Schwarz found the solution of the Plateau
problem for a regular quadrilateral in 1865 and for a general quadrilateral in
1867 (allowing the construction of his periodic surface families) using
complex methods. Weierstrass and Enneper developed more useful
representation formulas, firmly linking minimal surfaces to complex analysis
and harmonic functions. Other important contributions came from
Beltrami, Bonnet, Darboux, Lie, Riemann, Serret and Weingarten.
Between 1925 and 1950 minimal surface theory revived, now mainly aimed
at nonparametric minimal surfaces. The complete solution of the Plateau
problem by Jesse Douglas and Tibor Radó was a major milestone.
Bernstein’s problem and Robert Osserman’s work on complete minimal
surfaces of finite total curvature were also important.
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Another revival began in the 1980s. One cause was the discovery in 1982
by Celso Costa of a surface that disproved the conjecture that the plane,
the catenoid, and the helicoid are the only complete embedded minimal
surfaces in R3 of finite topological type. This not only stimulated new work
on using the old parametric methods, but also demonstrated the
importance of computer graphics to visualise the studied surfaces and
numerical methods to solve the "period problem" (when using the
conjugate surface method to determine surface patches that can be
assembled into a larger symmetric surface, certain parameters need to be
numerically matched to produce an embedded surface). Another cause was
the verification by H. Karcher that the triply periodic minimal surfaces
originally described empirically by Alan Schoen in 1970 actually exist. This
has led to a rich menagerie of surface families and methods of deriving new
surfaces from old, for example by adding handles or distorting them.
Currently the theory of minimal surfaces has diversified to minimal
submanifolds in other ambient geometries, becoming relevant to
mathematical physics (e.g. the positive mass conjecture, the Penrose
conjecture) and three-manifold geometry (e.g. the Smith conjecture, the
Poincaré conjecture, the Thurston Geometrization Conjecture).
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Catenoid

Figure: Catenoid .
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A soap film catenoid.

Figure:
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Helicoid

Figure: A helicoid.
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Costa minimal surface
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Heinz-Hopf curvature problem

Let D(w0,R) be a disk in R2 and let f : D(w0,R) → R be a C2 function
that solves the minimal surface equation

fuu(1 + f2v )− 2fufv fuv + fvv (1 + f2u) = 0.

The graph of f: S = Graphf = {(u, v , f(u, v))} is called a minimal graph
in R3 over the disk D(w0,R). Then the Gaussian curvature of the graph S
at a point P = (u, v , f(u, v)) is given by

K(P) =
fuufvv − f2uv

(1 + f2u + f2v )2
.

Observe that an important fact for minimal surfaces. Their mean curvature
is equal to zero.
Assume that ξ is a point above w0. A longstanding open problem in the
theory of minimal surfaces is to determine the precise value of the constant
c0 in the inequality

|K(ξ)|≤ c0
R2 . (1)

David Kalaj, University of Montenegro. Talk at FACULTY OF SCIENCES AND MATHEMATICS, PrishtinaGaussian curvature conjecture for minimal graphsOctober 20, 2022 10 / 33



Proposed inequality

E. Hopf and E. Heinz (1951, 1952) found some numerical estimates for c0,
and it comes from their approach the following conjectured sharp inequality

|K(ξ)|≤ π2/2
R2 . (2)

The inequality (2) has been also conjectured by Duren in his book On
harmonic mappings on the plane.
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Known results

This conjecture has been proved by Finn and Osserman in 1964, under
the additional assumption that the tangential plane of the minimal
surface is horizontal at the point ξ.

J. C. C. Nitsche proved it for symmetric minimal surfaces in 1973.
R. R. Hall gives the estimate of the curvature using some specific
estimates (in the literature known as Heinz type estimates); we will
describe it in more detail after introducing some basic notions.
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Complex-analytic setting of the problem

Let M ⊂ R3 = C× R be a minimal graph lying over the unit disc D ⊂ C.

Let w = (w1,w2,w3) : D → M be a conformal harmonic parametrization of
M with w(0) = 0. Its projection (w1,w2) : D → D is a harmonic
diffeomorphism of the disc which may be assumed to preserve orientation.
Let z be a complex variable in D, and write w1 + ıw2 = f in the complex
notation.
We denote by fz = ∂f /∂z and fz̄ = ∂f /∂z̄ the Wirtinger derivatives of f .
The function ω defined by

fz̄ = ωfz (3)

is called the second Beltrami coefficient of f , and the above equation is the
second Beltrami equation with f as a solution. Observe that f̄z = fz̄ and
this notation will be used in the sequel.
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Orientation preserving of f is equivalent to Jac(f ) = |fz |2−|fz̄ |2> 0, hence
to |ω|< 1 on D. Furthermore, the function ω is holomorphic whenever f is
harmonic and orientation preserving. (In general, it is meromorphic when f
is harmonic.) To see this, let

u + ıv = f = h + g (4)

be the canonical decomposition of the harmonic map f : D → D, where h
and g are holomorphic functions on the disk.

Then,

fz = h′, fz̄ = g z̄ = g ′, ω = fz̄/fz = g ′/h′. (5)

In particular, the second Beltrami coefficient ω equals the meromorphic
function g ′/h′ on D. In our case we have |ω|< 1, so it is a holomorphic
map ω : D → D.
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We now consider the Enneper–Weierstrass representation of the minimal
graph ϖ = (u, v ,T ) : D → M ⊂ C× R over f . We have

u(z) = ℜf (z) = ℜ
∫ z

0
ϕ1(ζ)dζ

v(z) = ℑf (z) = ℜ
∫ z

0
ϕ2(ζ)dζ

T (z) = ℜ
∫ z

0
ϕ3(ζ)dζ

where

ϕ1 = 2(u)z = 2(ℜf )z = (h + ḡ + h̄ + g)z = h′ + g ′,

ϕ2 = 2(v)z = 2(ℑf )z = ı(h̄ + g − h − ḡ)z = ı(g ′ − h′),

ϕ3 = 2(T )z =
√

−ϕ2
1 − ϕ2

2 = ±2ı
√
h′g ′.
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Let us introduce the notation p = fz . We have

p = fz = (ℜf )z + ı(ℑf )z =
1
2
(h′ + g ′ + h′ − g ′) = h′. (6)

By using ω = fz̄/fz = g ′/h′ (see (5)), it follows that

ϕ1 = h′+g ′ = p(1+ω), ϕ2 = −ı(h′−g ′) = −ıp(1−ω), ϕ3 = ±2ıp
√
ω.

From the formula for ϕ3 we infer that ω has a well-defined holomorphic
square root:

ω = q2, q : D → D holomorphic. (7)
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In terms of the Enneper–Weierstrass parameters (p, q) given by (6) and (7)
we obtain

ϕ1 = p(1 + q2), ϕ2 = −ıp(1 − q2), ϕ3 = −2ıpq. (8)

(The choice of sign in ϕ3 is a matter of convenience; since we have two
choices of sign for q in (7), this does not cause any loss of generality.)
Hence,

ϖ(z) =

(
ℜf (z),ℑf (z),ℑ

∫ z

0
2p(ζ)q(ζ)dζ

)
, z ∈ D.
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The curvature K of the minimal graph M is expressed in terms of (h, g , ω)
(5), and in terms of the Enneper–Weierstrass parameters (p, q), by

K = − |ω′|2

|h′g ′|(1 + |ω|)4
= − 4|q′|2

|p|2(1 + |q|2)4
, (9)

where p = fz and ω = q2 = fz̄/fz .
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An approach - Heinz type inequality

In the last formula, using Schwarz lemma we get:

|K| ≤ 4(1 − |q(0)|2)2

|p(0)|2(1 + |q(0)|2)4

=
4(1 − |ω(0)|)2

(|h′(0)|2+|g ′(0)|2)(1 + |ω(0)|)2

≤ 4
|h′(0)|2+|g ′(0)|2

,

We pose the following open problem: Whether this inequality
|h′(0)|2+|g ′(0)|2≥ 8

π2 for for a harmonic mapping f = h + g : D → D
which is onto, f (0) = 0 and g ′

h′ = q2 i.e. the dilation is the square of
an analytic function? This would solve the Hopf-Heinz problem. We will
another strategy instead. We will use equation (9) directly.
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It turns out that this question is very hard and it remains open. However,
this approach still gives some satisfactory results.

R. R. Hall proved in 1982 that |h′(0)|2+|g ′(0)|2> 27
4π2 for harmonic

mappings f = h + g : D → D which is onto and f (0) = 0. This inequality
is sharp.
For "nearly extremal" function f in this estimate the dilation is not the
square of an analytic function.
Hall’s estimate gives K ≤ 16π2

27 . Later, he improved it in 1998 and obtained
the inequality K ≤ 16π2

27 − 10−5.
The example of Scherk surface gives and the appropriate h and g (the
dilation is equal to z2) shows that in the estimate K ≤ c the constant c
cannot be smaller than conjectured π2

2 .
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The conjectured "nearly extremal" minimal surface gives the motivation for
the following:

Definition
Assume that Q = Q(a, b, c , d) is a bicentric quadrilateral inscribed in the
unit disk D. A minimal graph S = {(u, v , f(u, v)), (u, v) ∈ Q} over the
quadrilateral Q is called a Scherk type surface if it satisfies f(u, v) → +∞
when (u, v) → ζ ∈ (a, b) ∪ (c , d) and f(u, v) → −∞ when
(u, v) → ζ ∈ (b, c) ∪ (a, d) .
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Comparison theorem

For every w ∈ D, there exist four different points a0, a1, a2, a3 ∈ T and a
harmonic mapping f of the unit disk onto the bicentric quadrilateral
Q(a0, a1, a2, a3) that solves the Beltrami equation

f̄z(z) =

w +
ı(1−w4)z
|1−w4|

1 + ıw(1−w4)z
|1−w4|


2

fz(z), (10)

|z |< 1 and satisfies the initial condition f (0) = 0, fz(0) > 0.

The mapping f gives rise to a Scherk type minimal surface
S⋄ : ζ = f⋄(u, v) over the quadrilateral Q(a0, a1, a2, a3), containing the
point ξ = (0, 0, 0) above the origin so that its Gaussian normal is

n⋄ξ = − 1
1 + |w |2

(2ℑw , 2ℜw ,−1 + |w |2),

and such that Duv f⋄(0, 0) = 0.
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Moreover, every other non-parametric minimal surface S : ζ = f(u, v) over
the unit disk, containing the point ξ above zero, with nξ = n⋄ξ and
Duv f(0, 0) = 0 satisfies the sharp inequality

|KS(ξ)|< |KS⋄(ξ)|.

This Theorem (proved in [Kalaj]) is the first step in proving the main resul.
So it remains describe all Scherk type minimal surfaces above the unit disk
and find the supremum of its Gaussian curvatures in the point above the
center of the disk!
In the following slides we will describe describe all Scherk type minimal
surfaces. and using it we will prove the desired sharp inequality for
curvature.
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Construction of two-parameter family of Scherk type
surfaces

Let p, q and β satisfies

0 ≤ p ≤ q ≤ q − p + π ≤ 2π (11)

and

p ≤ q − p + 2β ≤ 2π − p ≤ 2π − q + p + 2β ≤ 2π + p. (12)
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By Sheil-Small theorem, harmonic extension f1 of the function

F1(ψ) =


a1 = eıt1 , if ψ ∈ [0, s1);
a2 = eıt2 , if ψ ∈ [s1, s2);
a3 = eıt3 , if ψ ∈ [s2, s3);
a4 = eıt4 , if ψ ∈ [s3, 2π).

with s1 = p, s2 = π, s3 = π+ q− p, t1 = q+π
2 + β− p, t2 = 5π−q

2 − p− β,

t3 = 5π−3q
2 + β + p and t4 = 5π−q

2 + p − β solves Beltrami equation

f z(z) = z2fz(z). (13)

After the rotation R of the quadrilateral in co-domain for the angle
β + q−π

2 , we get the quadrilateral with vertices eıx , eıy , eıs , eıp where

x = q − p + 2β, y = 2π − p, s = 2π − q + p + 2β, and tanβ =
sin q

2
cos( q2−p)

.

Last identity is equivalent to the condition that the quadrilateral with
vertices eıx , eıy , eıs , eıp where
x = q − p + 2β, y = 2π − p, s = 2π − q + p + 2β is bicentric.
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Using Mobius transform we can get a new f which maps the unit disk onto
a bicentric quadrilateral whose vertices are eıp, eıx , eıy , and eıs and such
that the limit points for the mapping f are 1, eıα,−1,−eıα (i.e. makes a
rectangle). More precisely,

f (re it) =
1
2π

∫ 2π

0

1 − r2

1 + r2 − 2r cos(t − ψ)
F (eıψ)dψ

where F is the step function defined by

F (eıψ) =


eıx , if ψ ∈ [0, α);
eıy , if ψ ∈ [α, π);
eıs , if ψ ∈ [π, π + α);
eıp, if ψ ∈ [π + α, 2π).

Here cosα = sin(q−p)−sin p
sin(q−p)+sin p !
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We again infer the existence of a ∈ D, b ∈ C, θ ∈ [0, 2π] such that

p =
b(1 − za)2

(z2 − 1)(z2 − e2ıα)
(14)

and
q = eıθ

z − a

1 − za
, (15)

where p = h′ and pq2 = g ′. Note that a is the zero of the Möbius
transformation M.
After some computation, we get a, b, θ, also, there is a more appropriate
form of f .
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First, for further calculations, we express f as

f (z) = u(z) + ıv(z) + f (0), (16)

with

f (0) =
αe2ıβ cos(p − q) + (π − α) cos p

π
,

u(reıt) =
cos(q − p + 2β)− cos p

π
tan−1 r sin(α− t)

1 − r cos(α− t)

+
cos p − cos(p − q + 2β)

π
tan−1 r sin t

1 + r cos t

+
cos p − cos(p − q + 2β)

π
tan−1 r sin(α− t)

1 + r cos(α− t)

+
cos(q − p + 2β)− cos p

π
tan−1 r sin t

1 − r cos t

(17)
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and

v(reıt) =
sin(q − p + 2β) + sin p

π
tan−1 r sin(α− t)

1 − r cos(α− t)

− sin p + sin(p − q + 2β)
π

tan−1 r sin t

1 + r cos t

+
sin p − sin(p − q + 2β)

π
tan−1 r sin(α− t)

1 + r cos(α− t)

+
sin(q − p + 2β − sin p)

π
tan−1 r sin t

1 − r cos t
,

(18)

while

a =
cos(q − p)− cos p − ı sin q

1 − cos q + 2
√
sin p sin(q − p) + ı( sin(q − p)− sin p)

. (19)
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Or,

a =

√
1 −

√
sin p sin(q − p)

1 +
√
sin p sin(q − p)

( cos δ + ı sin δ), (20)

where

cos δ = −
sin(q2 − p)

sin q
2

√
1 − sin(q − p) sin p

and

sin δ = −
cos q

2

√
sin(q − p) sin p

sin q
2

√
1 − sin(q − p) sin p

.

Also,

|b|2= 2
π2

(
2 sin2(p−q) sin2 α

2
+2 sin2 p cos2

α

2
−2 sin p sin(p−q) sin(2β) sinα

)
.

(21)
and

θ = tan−1[cos(p − q) tan(p)].
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Finally, inserting these values, we get that the Gaussian curvature at the
point over the 0 = f (z◦) is equal to

K = −4(1 − |a|2)2

|b|2
|z2
◦ − 1|2|z2

◦ − e2ıα|2

(|1 − z◦a|2+|z◦ − a|2)4
. (22)

Or

−K =
4π2(1 + sin p sin(q − p))(
1 +

√
sin p sin(q − p)

)4
|1 − z2

◦ |2|1 − z2
◦e

2ıα|2

((1 + |z◦|2)(1 + |a|2)− 4ℜ(az̄◦))4

=
π2

4
(1 + sin p sin(q − p))

|1 − z2
◦ |2|1 − z2

◦e
2ıα|2

((1 + |z◦|2)− 4 ℜ(az̄◦)
(1+|a|2))

4
.

(23)

It is not so beautiful, but ℜ(az̄◦) ≤ 0 will help very much! And it really
holds!
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Based on (17), (18) we obtain a Scherk type surface
ϖ(z) = (u(z), v(z),T (z)) in Figure 4
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Figure: A Scherk type surface for p = π/2 + 0.1, q = π − 0.1.
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over the quadrilateral shown in Figure 5
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Figure: A bicentric quadrilateral inscribed in the unit disk for p = π/2 + 0.1,
q = π − 0.1.

David Kalaj, University of Montenegro. Talk at FACULTY OF SCIENCES AND MATHEMATICS, PrishtinaGaussian curvature conjecture for minimal graphsOctober 20, 2022 32 / 33



Localization lemma and proof of conjecture

Lemma (Localization of the zero z◦)

Assume that (p, q) is a pair of real numbers that belongs to the domain R
and assume that z◦ is the zero of f . Then we have
a) arg z◦ ∈ (α, π), for q < π, q < 2p,
b) arg z◦ ∈ (π + α, 2π), for q > π, q > 2p,
c) arg z◦ ∈ (π, π + α), for q ∈ (π, 2p),
d) arg z◦ ∈ (0, α), for q ∈ (2p, π) .

This is a kind of harmonic argument principle. From this we have
ℜ(az̄◦) ≤ 0 and, then, from the formula (22) we get

|K|≤ π2

2
|1 − z2

◦ |2|z2
◦ − e2ıα|2

(1 + |z◦|2)4
≤ π2

2
,
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The images of four consecutive sectors, arg z ∈ [α, π], [π, π + α],
[π + α, 2π] and [0, α] under the harmonic mapping f . In this case
p = π/2 + 0.1, q = π − 0.1, so q < min{2p, π}. Notice that the first
curvilinear quadrilateral contains the zero, and we are in the case a).
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